新普京澳门娱乐场网站微信号
胡敏 博士 副研究员 我校新普京澳门娱乐场网站,江苏常州 213164 办公电话: Email: 157921813@qq.com |
教育背景:
2008.09-2011.12 中山大学生命科学学院,环境科学专业,博士研究生
2005.09-2008.07 中山大学生命科学学院,环境科学专业,硕士研究生
2001.09-2005.07 深圳大学生命科学学院,生物技术专业,学士
工作履历:
2011.12--2021.10 广东省科学院生态环境与土壤研究所,助理研究员、副研究员。
2021.10--至今 我校新普京澳门娱乐场网站,副研究员。
主授课程:
研究领域:
土壤金属转化微生物;发酵食品微生物生态
奖励与荣誉:
主要论著:
第一/通讯作者:
1. Hu, M*., Li, F., Qiao, J., Yuan, C., Yu, H., Zhuang, L., 2021. New arsenite oxidase gene (aioA) PCR primers for assessing arsenite-oxidizer diversity in the environment using high-throughput sequencing. Frontiers in Microbiology 12.
2. Hu, M.*, Dong, J., Tan, G.*, Li, X., Zheng, Z., Li, M., 2021. Metagenomic insights into the bacteria responsible for producing biogenic amines in sufu. Food Microbiology 98, 103762.
3. Tan, G., Hu, M.*, Li, X., Pan, Z., Li, M., Li, L., Zheng, Z., Yang, M., 2021. Metagenomics reveals the diversity and taxonomy of antibiotic resistance genes in sufu bacterial communities. Food Control 121, 107641.
4. Tan, G.L., Hu, M.*, Li, X.Y., Pan, Z.Q., Li, M., Li, L., Yang, M.X., 2020. High-throughput sequencing and metabolomics reveal differences in bacterial diversity and metabolites between red and white sufu. Frontiers in Microbiology 11, 758.
5. Hu, M., Sun, W.M., Krumins, V., Li, F.B.*, 2019. Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root. Science of The Total Environment 649, 405-412.
6. Hu, M., Chen, P.C., Sun, W.M., Li, F.B.*, Cui, J.H., 2019. Physiological and genomic characterization of a nitrate-reducing Fe (II)-oxidizing bacterium isolated from paddy soil. Geomicrobiology Journal 36, 433-442.
7. Hu, M., Li, F.B.*, Liu, C.P., Wu, W.J., 2015. The diversity and abundance of As (III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Scientific Reports 5, 13611.
8. Deng, D.M., Hu, M.*, Li, L.L., Huang, Y.C., 2018. Denitrifying microbial communities in heavy-metal-contaminated paddy soils near electronic-waste processing centers. Water, Air, & Soil Pollution 229, 318.
9. Hu, M., Chen, P.C., Sun, W.M., Li, F.B.*, Cui, J.H., 2017. A novel organotrophic nitrate-reducing Fe (II)-oxidizing bacterium isolated from paddy soil and draft genome sequencing indicate its metabolic versatility. RSC Advances 7, 56611-56620.
10. Hu, M., Li, F.B.*, Lei, J., Fang, Y., Tong, H., Wu, W.J., Liu, C.S., 2015. Pyrosequencing revealed highly microbial phylogenetic diversity in ferromanganese nodules from farmland. Environmental Science: Processes & Impacts 17, 213-224.
11. Chen, L.X. #, Hu, M.#, Huang, L.N., Hua, Z.S., Kuang, J.L., Li, S.J., Shu, W.S.*, 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. The ISME Journal 9, 1579-1592.
12. Tong, H. #, Hu, M. #, Li, F.B.*, Chen, M.J., Lv, Y.H., 2015. Burkholderiales participating in pentachlorophenol biodegradation in iron-reducing paddy soil as identified by stable isotope probing. Environmental Science: Processes & Impacts 17, 1282-1289.
13. 胡敏, 李芳柏*, 2014. 土壤微生物铁循环及其环境意义. 土壤学报 51, 683-698.
14. 谭贵良, 潘子强, 张世伟, 胡敏*, 冯荣虎, 杨懋勋, 肉眼读取-荧光微球竞争免疫层析法半定量快速检测保健食品中的西布曲明. 食品科学, 1-9.
其它作者:
1. Yuan, C.L., Qiao, J.T., Li, F.B.*, Zhang, X.F., Du, Y.H., Hu, M., Sun, W.M., 2020. Community dynamics of As (V)-reducing and As (III)-oxidizing genes during a wet–dry cycle in paddy soil amended with organic matter, gypsum, and iron oxide. Journal of Hazardous Materials, 122485.
2. Yuan, C.L., Li, F.B.*, Cao, W.H., Yang, Z., Hu, M., Sun, W.M., 2019. Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions. Journal of Hazardous Materials 378, 120672.
3. Yu, T., Wang, Y.*, Chen, S.C., Hu, M., Wang, Z.L., Wu, G.Z., Ma, X.Y., Chen, Z., Zheng, C.T., 2017. Low-molecular-weight chitosan supplementation increases the population of Prevotella in the cecal contents of weanling pigs. Frontiers in Microbiology 8, 2182.
4. Qiao, J.T., Li, X.M., Li, F.B.*, Liu, T.X., Young, L.Y., Huang, W.L., Sun, K., Tong, H., Hu, M., 2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil. Environmental Science & Technology 53, 5034-5042.
5. Li, X.M., Qiao, J.T., Li, S., Häggblom, M.M., Li, F.B.*, Hu, M., 2019. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environmental Science & Technology 54, 2172-2181.
6. Sun, W.M.*, Xiao, E.Z., Pu, Z.L., Krumins, V., Dong, Y.R., Li, B.Q., Hu, M., 2018. Paddy soil microbial communities driven by environment-and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Science of The Total Environment 612, 884-893.
7. Sun, W.M.*, Krumins, V., Dong, Y.R., Gao, P., Ma, C.Y., Hu, M., Li, B.Q., Xia, B.Q., He, Z.J., Xiong, S.L., 2018. A combination of stable isotope probing, Illumina sequencing, and co-occurrence network to investigate thermophilic acetate-and lactate-utilizing bacteria. Microbial ecology 75, 113-122.
8. Qiao, J.T., Li, X.M., Hu, M., Li, F.B.*, Young, L.Y., Sun, W.M., Huang, W.L., Cui, J.H., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environmental Science & Technology 52, 61-70.
9. Sun, W.M.*, Xiao, E.Z., Xiao, T.F., Krumins, V., Wang, Q., Häggblom, M., Dong, Y.R., Tang, S., Hu, M., Li, B.Q., 2017. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environmental Science & Technology 51, 9165-9175.
10. Zhuang, L., Tang, J., Wang, Y.Q., Hu, M., Zhou, S.G.*, 2015. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. Journal of Hazardous Materials 293, 37-45.
11. Tong, H., Liu, C.S., Li, F.B.*, Luo, C.L., Chen, M.J., Hu, M., 2015. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing. Journal of Hazardous Materials 298, 252-260.
12. Hua, Z.S., Han, Y.J., Chen, L.X., Liu, J., Hu, M., Li, S.J., Kuang, J.L., Chain, P.S., Huang, L.N., Shu, W.S.*, 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. The ISME Journal 9, 1280-1294.
13. Yu, H.Y., Wang, Y.K., Chen, P.C., Li, F.B.*, Chen, M.J., Hu, M., 2014. The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol. Journal of Hazardous Materials 272, 10-19.
14. Yu, H.Y., Wang, Y.K., Chen, P.C., Li, F.B.*, Chen, M.J., Hu, M., Ouyang, X.G., 2014. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron (III) reduction. Journal of environmental management 132, 42-48.
15. Tong, H., Hu, M., Li, F.B.*, Liu, C.S., Chen, M.J., 2014. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biology and Biochemistry 70, 142-150.
16. Liu, T.X., Li, X.M., Zhang, W., Hu, M., Li, F.B.*, 2014. Fe (III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17. Journal of colloid and interface science 423, 25-32.
17. Li, S.J., Hua, Z.S., Huang, L.N., Li, J., Shi, S.H., Chen, L.X., Kuang, J.L., Liu, J., Hu, M., Shu, W.S.*, 2014. Microbial communities evolve faster in extreme environments. Scientific Reports 4, 6205.
18. Kuang, J.L., Huang, L.N., Chen, L.X., Hua, Z.S., Li, S.J., Hu, M., Li, J.T., Shu, W.S.*, 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. The ISME Journal 7, 1038-1050.
19. Chen, M.J., Cao, F., Li, F.B.*, Liu, C.S., Tong, H., Wu, W.J., Hu, M., 2013. Anaerobic transformation of DDT related to iron (III) reduction and microbial community structure in paddy soils. Journal of Agricultural and Food Chemistry 61, 2224-2233.
20. Chen, L.X., Li, J.T., Chen, Y.T., Huang, L.N., Hua, Z.S., Hu, M., Shu, W.S.*, 2013. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environmental Microbiology 15, 2431-2444.
21. Chen, M.J., Shih, K.M., Hu, M., Li, F.B.*, Liu, C.S., Wu, W.J., Tong, H., 2012. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. Journal of Agricultural and Food Chemistry 60, 2967-2975.
22. Zhang, J., Liao, B., Craik, D.J., Li, J.T., Hu, M., Shu, W.S.*, 2009. Identification of two suites of cyclotide precursor genes from metallophyte Viola baoshanensis: cDNA sequence variation, alternative RNA splicing and potential cyclotide diversity. Gene 431, 23-32.
23. Zhang, J., Hu, M., Li, J.T., Guan, J.P., Yang, B., Shu, W.S.*, Liao, B., 2009. A transcriptional profile of metallophyte Viola baoshanensis involved in general and species-specific cadmium-defense mechanisms. Journal of Plant Physiology 166, 862-870.
发明专利:
1. 胡敏;刘传平;李芳柏。一种检测环境微生物砷氧化基因物种组成的PCR引物及方法,专利号:ZL201910525589.X。
科研项目:
主持项目:
1. 稻田厌氧氨氧化耦合砷还原的微生物机制,项目号41977138,国家自然科学基金面上项目,2020.01- 2023. 12,在研。
2. 土壤母质影响厌氧稻田砷氧化固定过程的效应与机制,项目号,广东省自然科学基金面上项目,2020.01- 2023. 12,在研。
3. 中性厌氧亚铁氧化与硝酸盐还原过程相互作用的微生物机制,项目号41201253,国家自然科学基金青年基金,2013.01-2015.12,已结题。
4. 稻田中性厌氧硝酸盐依赖亚铁氧化耦合砷固定的分子生物学机制,项目号2017A030313218,广东省自然科学基金面上项目,2017.05-2020.05,已结题。
5. 微生物群落组成的测定技术及相关软件研发,项目号Z113343,国家重点实验室开放基金,2013.12-2014.12,已结题。
6. 地下水环境中性厌氧亚铁氧化耦合砷转化固定的生物地球化学机制,项目号GBL21403,国家重点实验室开放基金,2014.09-2015.12,已结题。
参加项目:
1. 红壤区稻田铁循环耦合镉行为的生物地球化学机制,项目号41420104007,国家自然科学基金重点项目,2015.01-2019.12,排名第三,已结题。
2. 稻田铵态氮转化耦合铁还原影响镉有效性的效应与机制,项目号41671472,国家自然科学基金面上项目,2017.01-2020.02,排名第三,已结题。
3. 腐殖质促进稻田土壤锑还原及甲基化的效应与机制,国家自然科学基金面上项目,2021.01-2024.12,排名第二,在研。
4. 农田系统重金属迁污染阻隔和钝化技术与材料研发,项目号2016YFD0800700,科技部重大研发项目,2016.01-2020.12,子课题5,已结题。
5. 中性厌氧亚铁氧化耦合污染物转化的生物地球化学机制,项目号41330857,国家自然科学基金重点项目,2014.01-2018.12,排名第三,已结题。
6. 极端酸性环境形成过程中微生物群落结构与功能演变,项目号40930212,国家自然科学基金重点项目,2010.01-2013.12,排名第六,已结题。